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Summary

We have evaluated 23 different statistics, from a total
of 10 popular software packages for model-free linkage
analysis of nuclear-family data, by applying them to sin-
gle-marker data simulated under several two-locus dis-
ease models. The statistics that we examined fall into
two broad categories: (1) those that test directly for in-
creased identity-by-state or identity-by-descent sharing
(by use of the programs APM, Genetic Analysis System
[GAS] SIBSTATE and SIBDES, SAGE SIBPAL, ERPA,
SimIBD, and Genehunter NPL) and (2) those that are
based on likelihood-ratio tests and that report LOD
scores (by use of the programs Splink, SIBPAIR, Map-
maker/Sibs, ASPEX, and GAS SIBMLS). For each of
eight two-locus disease models, we analyzed six data
sets; the first three data sets consisted of two-child fam-
ilies with both sibs affected and zero, one, or both par-
ents typed, whereas the other three data sets consisted
of four-child families with at least two affected sibs and
zero, one, or both parents typed. We report false-positive
rates, overall rank by power, and the power for each
statistic. We give rough recommendations regarding
which programs provide the most powerful tests for link-
age, as well as the programs to be avoided under certain
conditions. For the likelihood-ratio-based statistics, we
examined the effects of various treatments of sibships
with multiple affected individuals. Finally, we explored
the use of some simple two-of-three composite statistics
and found that such tests are of only marginal benefit
over the most powerful single statistic.
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Introduction

There have been significant advances in the understand-
ing of the genetic determinants of diseases in which just
one or two major genes are acting, such as in Huntington
disease, cystic fibrosis, and even breast cancer. In con-
trast, the so-called complex diseases, such as diabetes
mellitus, schizophrenia, alcoholism, and bipolar disor-
der, represent a new level of genetic intricacy for which
analytical tools have, until recently, proved inadequate.
A plethora of approaches for analysis of complex dis-
eases has emerged to deal with these disorders.

One such approach for grappling with complex dis-
eases that has proved extremely versatile is the affected-
sib-pair (ASP) study design. Recent successes using the
ASP study design (Davies et al. 1994; Hashimoto et al.
1994; Schwab et al. 1995; Stine et al. 1995; Weeks and
Lathrop 1995; Field et al. 1996) have spawned further
efforts and have led to an explosion in the number of
statistics that have been developed with the ASP study
design in mind. To some extent, all these statistics are
based on the premise that a set of ASPs will share more
than the expected proportion of alleles at a disease-sus-
ceptibility locus. Although the hypothesis that a group
of ASPs shares 150% of their alleles at a disease-sus-
ceptibility locus is easily stated, there are numerous
methods for testing this hypothesis. Which method is
the best suited for the data at hand?

The question is not a trivial one, but broad general-
izations are sometimes possible. For example, sharing at
a locus can be quantified as the number of alleles shared
identical by state (IBS) or identical by descent (IBD). Two
alleles that are shared IBS have the same label but may
not be of the same ancestral origin; alleles shared IBD
are always IBS but also have the same ancestral origin.
Because an allele that is IBS may not be IBD, there is
generally less information about inheritance in a meas-
ure of IBS sharing than in a measure of IBD sharing.
Consequently, a test that measures IBD sharing usually
will be more powerful than the same test based on IBS
sharing. However, many different tests (using IBD or IBS
information) have been proposed, each with strengths
and weaknesses, making it very difficult for the re-



1432 Am. J. Hum. Genet. 61:1431–1444, 1997

searcher to decide which test can be applied most fruit-
fully. To make matters even more confusing, different
computer implementations of the same test may have
different false-positive rates and power to detect linkage,
for the same data.

There are basically two approaches for determination
of which statistic is optimal: (1) derive analytical ar-
guments (usually involving asymptotic theory) or (2)
perform extensive simulation studies. For the analytic
realm, Knapp et al. (1994a) have concluded that the test
based on the mean proportion of IBD sharing (called
the “t2 test” or “ASP mean test” and implemented in
the SIBPAL package) is the uniformly most powerful test
under a recessive mode of inheritance and is locally op-
timal otherwise. These findings agree with similar con-
clusions derived from simulation results (Blackwelder
and Elston 1985). More recently, tests based on the like-
lihood ratio defined by Risch (1990) have become the
focus of interest. Extensions to Risch’s original definition
have increased power by restricting parameters to those
representing possible genetic models (Holmans 1993)
and by introducing rapid multipoint analysis (Hauser et
al. 1996; Hinds and Risch 1996). Feingold and Sieg-
mund (1997) developed theory for optimal test design
for a fully or partially recessive trait. They also found
that the ASP mean test was most powerful for a recessive
trait but only for the relatively special case of a common
disease allele. Other tests were more powerful in other
situations. More specifically, Feingold and Siegmund de-
fined a test statistic: , where Z2 and Z1T (c) � Z � cZt 2 1

are the proportions of siblings sharing two or one alleles,
respectively. They found that there is an optimal c that
depends on the mode of inheritance of the disease. Fein-
gold and Siegmund showed that c � ½ (which corre-
sponds to the ASP mean test, implemented in SIBPAL)
will provide good power, given that the disease is caused
by a single recessive-trait locus, but that will bec � 0
optimal for a heterogeneous rare recessive trait. Feingold
and Siegmund concluded that, because the inheritance
pattern is often ill defined, c � ¼ provides a useful com-
promise. The likelihood-ratio test of Risch (1990) and
Holmans (1993) in effect estimates c (within certain con-
straints). Although Feingold and Siegmund do not make
direct comparisons between the Tt(¼) test and the like-
lihood-ratio test, they do mention that the Tt(¼) test “is
slightly more efficient than the likelihood-ratio test when
the mode of inheritance is indeed intermediate between
additive and recessive and less efficient when the mode
of inheritance is closer to the extremes” (Feingold and
Siegmund 1997, p. 972).

In this paper, we use the simulation approach to eval-
uate the relative behavior of 23 statistics for the analysis
of nuclear-family data, by directly comparing the em-
pirical results of 10 computer programs that have been
run on the same simulated data sets. The data for anal-

ysis were simulated under several two-locus disease mod-
els (Martinez and Goldin 1990; Goldin and Weeks
1993), which were chosen to be representative of some
of the intricacies that might underlie the genetics of com-
plex diseases. The families themselves have several dif-
ferent structures that incorporate untyped parents and
multiple siblings (both unaffected and affected) in a sin-
gle sibship. We evaluate the various statistics in terms
of power and empirical false-positive rates, for a sample
size of 100 families. Also, we examine the pairwise cor-
relations among a selected set of statistics, for a subset
of the data.

Thus, the primary goal of this paper is to provide
useful guidelines for determination of which of the many
software packages and statistics will be most useful for
specific data. In addition, our results for single statistics
and for direct comparisons of different linkage methods
should facilitate a critical evaluation of positive, nega-
tive, and conflicting results from the use of these various
statistics. A secondary goal is to examine the power of
composite statistics based on a consensus of multiple
statistics, when evidence of linkage is sought. The use
of these composite statistics is motivated by the idea that,
if several statistics that test for linkage in slightly dif-
ferent ways are used, then a putative linkage is more
likely to be true if a majority (e.g., two of three) of the
linkage statistics are significant. Such a composite sta-
tistic has been used recently in a genomewide scan for
multiple-sclerosis loci (Haines et al. 1996).

Methods

Because of the large number of statistics, disease mod-
els, and data sets discussed here, we have adopted three
different systems of key words, described in detail below.
One system of key words (listed in table 1) describes the
programs and statistics that are compared. The other
two systems describe the disease models (see Power Es-
timates, first paragraph) and aspects of the data (see
Power Estimates, second paragraph).

Description of Statistics

We compared 23 statistics, as implemented by 10 soft-
ware packages (table 1). The Genetic Analysis System
(GAS) offers a command language for performance of
a host of IBD- and IBS-sharing tests (Young 1995). The
GAS SIBSTATE statistic performs a two-sided x2 test,
with 2 df, on the number of sib pairs sharing two, one,
or zero alleles IBS (gas.ibs.pchi2). It also computes the
sib-set statistic of Lange (1986) (gas.ibs.pz), which is
based on a sum of IBS-similarity scores over all possible
pairs of siblings, where the scores are 1, ½, and 0 for
sib pairs sharing both alleles IBS, one allele IBS, or zero
alleles IBS, respectively; multiple affected siblings per
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Table 1

Statistics, the Software Packages That Produced Them, Descriptions, and References

Statistic Name Software Package Description Reference(s)

apm APM Based on IBS sharing
among affected relative
pairs

Weeks and Lange
(1988); Schroeder et
al. (1994)

aspex.ibd ASPEX sib�ibd Calculates LOD by use of
only unambiguous IBD
sharing

Hauser et al. (1996);
Hinds and Risch
(1996)

aspex.only ASPEX sib�only Uses all sibs to recon-
struct parents, but cal-
culates LOD on the ba-
sis of only the ASP

Hauser et al. (1996);
Hinds and Risch
(1996)

aspex.phase ASPEX sib�phase Calculates LOD by use of
all available marker
data

Hauser et al. (1996);
Hinds and Risch
(1996)

erpa ERPA Extended-relative-pair
analysis

Curtis and Sham
(1994)

gas.ibd.pb10 GAS SIBDES One-sided binomial test
on 1:0 IBD sharing

Penrose (1953); Young
(1995)

gas.ibd.pc210 GAS SIBDES Two-sided x2 test on 2:1:0
IBD sharing

Young (1995)

gas.ibd.pt2 GAS SIBDES One-sided t2 test on 2:1:0
IBD sharing

Young (1995)

gas.ibs.pchi2 GAS SIBSTATE Two-sided x2 test on 2:1:0
IBS sharing

Lange (1986); Young
(1995)

gas.ibs.pz GAS SIBSTATE Lange’s sib-set statistic Lange (1986); Young
(1995)

gas.lod GAS SIBMLS Calculates LOD; ignores
families in which both
parents have not been
typed

Holmans (1993);
Young (1995)

gh.all Genehunter NPL ALL statistic Kruglyak et al. (1996)
gh.pairs Genehunter NPL PAIRS statistic Kruglyak et al. (1996)
sage.asp SIBPAL ASP mean test for in-

creased sharing
SAGE (1994)

sage.he SIBPAL Haseman-Elston statistic SAGE (1994)
sibs.lod Mapmaker/Sibs Calculates LOD by use of

only the “first” ASP
Kruglyak and Lander

(1995)
sibs2.lod Mapmaker/Sibs Calculates LOD by use of

all “independent” pairs
of affected sibs

Kruglyak and Lander
(1995)

sibs3.lod Mapmaker/Sibs Calculates LOD by use of
all ASPs

Kruglyak and Lander
(1995)

simibd SimIBD Based on IBD sharing;
empirical P value based
on conditional
simulation

Davis et al. (1996)

splink.p Splink Pseudolikelihood x2 test Holmans (1993); Hol-
mans and Clayton
(1995)

splink.p.lod Splink Asymptotic P value for
splink.lod

Holmans (1993); Hol-
mans and Clayton
(1995)

sp.lod.p.both SIBPAIR Asymptotic P value for
LOD score under reces-
sive model, by use of
both affecteds and
unaffecteds

Hyer et al. (1991);
Knapp et al. (1994b);
Terwilliger (1996)

sp.lod.p.aff SIBPAIR Asymptotic P value for
LOD score under reces-
sive model, by use of
affecteds

Hyer et al. (1991);
Knapp et al. (1994b);
Terwilliger (1996)
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family are correctly handled by the sib-set statistic. Cal-
culation of IBD-sharing statistics is handled in GAS by
the SIBDES and SIBMLS statistics. All the IBD-sharing
statistics implemented in GAS (including gas.lod) use
only those families for which both parents are genoty-
ped; all other families are ignored. A two-sided x2 test
with 2 df (gas.ibd.pc210) can be used to detect devia-
tions from the expected proportion of sibs sharing two,
one, or zero alleles IBD. A more powerful test, the ASP
mean test (implemented in sage.asp and gas.ibd.pt2),
also called the “t2 test” (Blackwelder and Elston 1985),
measures the mean proportion of IBD sharing and com-
pares it with the expected 50% sharing, via the normal
distribution. To examine sharing, in sibs, of one or zero
alleles IBD, a one-sided binomial test (gas.ibd.pb10) is
appropriate.

Several of the statistics compared here are based on
maximization of the likelihood ratio of Risch (1990);
however, there are several possible variations in imple-
mentation. Holmans (1993) pointed out that simply
maximizing the likelihood ratio can result in parameter
values that are not biologically plausible and suggested
restriction of maximization to the so-called possible tri-
angle. Mapmaker/Sibs (sibs.lod, sibs2.lod, and
sibs3.lod), Splink (splink.p.lod and splink.p), and GAS
SIBMLS (gas.lod) restrict maximization to within the
possible triangle; LOD scores output by these programs
follow a mixture of x2 distributions with 1 and 2 df
(Holmans 1993). When more than two affected siblings
were present in a family, we used the three different
pairing schemes offered by Mapmaker/Sibs, to examine
the effects of forming all possible pairs (sibs3.lod), all
independent pairs (sibs2.lod), and only a single pair
(sibs.lod).

Maximization of the likelihood ratio also can be ac-
complished by use of other restrictions (Risch 1992).
ASPEX can maximize the likelihood while constraining
the dominance variance to 0 (the analysis method used
here). A LOD score determined by this procedure will
conform to a 50:50 mixture of a point mass at 0 and a
x2 distribution with 1 df, under the null hypothesis. The
aspex.ibd statistic uses only unambiguous IBD-sharing
information to calculate the LOD; aspex.only uses all
sibs to reconstruct the parents’ genotypes but calculates
the LOD on the basis of the ASP only; and aspex.phase
uses all available marker information when calculating
the LOD.

There is a correspondence between the nonparametric
ASP mean test and a parametric LOD score computed
under a recessive model (Hyer et al. 1991; Knapp et al.
1994b). On the basis of this motivation, SIBPAIR (Ter-
williger 1996) computes both a LOD score under a re-
cessive model and the associated P value from a 50:50
mixture of a point mass at 0 and a x2 distribution with
1 df. Two statistics are computed: one based on affected

sibs only (sp.lod.p.aff) and one based on both unaffected
and affected sibs (sp.lod.p.both).

Some methods are not restricted to nuclear-family
data, but they still rely on allele sharing as a test for
linkage and are valid for nuclear families. The affected-
pedigree-member (APM) method counts the number of
alleles shared IBS between affected pairs (excluding par-
ent-child pairs) and then normalizes this statistic. P val-
ues are computed analytically, on the basis of the the-
oretical null distribution (Weeks and Lange 1988;
Schroeder et al. 1994). SimIBD (simibd) counts the num-
ber of alleles shared IBD between affected pairs (again,
excluding parent-child pairs) and computes an empirical
P value, using conditional simulation to construct the
null distribution (Davis et al. 1996). The Genehunter
pairs statistic (gh.pairs) also counts the number of alleles
shared IBD (Kruglyak et al. 1996). When more than two
affected relatives are present in a pedigree, it may be
beneficial to measure sharing among a set of relatives
(Whittemore and Halpern 1994); Genehunter also per-
forms this type of computation (gh.all; see Kruglyak et
al. 1996). When ambiguous IBD sharing is encountered,
Genehunter averages over all possible IBD-sharing con-
figurations (weighted by likelihood) when both gh.pairs
and gh.all are calculated; Kruglyak et al. (1996) refer to
this averaging as the “perfect-data approximation.” The
P values for both the gh.pairs and gh.all statistics are
then based on the respective distributions formed from
all possible IBD-sharing scenarios for a given set of ped-
igrees. P values determined by use of the perfect-data
approximation for gh.pairs and gh.all are expected to
be conservative when the data are not fully informative.
The extended-relative-pair analysis (ERPA) method con-
structs an IBD-based statistic by computing the risk that
one member of an affected pair shares zero, one, or two
alleles IBD with the other member of the pair (Curtis
and Sham 1994). Significance is determined by a x2 with
1 df, by use of the expected number of alleles shared
(computed by use of only the pedigree structure, not the
observed marker phenotypes) and the observed number
of alleles shared (computed by use of observed marker
phenotypes).

The majority of the analysis programs used in this
study require the user to specify the allele frequencies
for each marker locus. However, Splink and ASPEX gen-
erate maximum-likelihood estimates of the allele fre-
quencies by default (a feature that can be disabled in
ASPEX, allowing user-specified allele frequencies). Be-
cause there were no very rare alleles in these data (there
were four equally frequent alleles), for which small ab-
solute changes in frequency estimates could have dras-
tically affected the statistics, we do not attempt to ex-
amine how estimation of allele frequencies from the data
affected the results.
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Table 2

Statistics with Shortcomings for a Given Family Structure and Parental Typing Scheme

PARENTAL TYPING

SOFTWARE PACKAGE AND STATISTIC(S) WITH SHORTCOMINGS, FOR FAMILY STRUCTURE OFa

Two Affected Sibs Only (2o Data Sets) At Least Two Affected Sibs (at2 Data Sets)

Both typed APM
ERPA
GAS: gas.ibd.pc210, gas.ibs.pchi2, and gas.ibs.pzb

SIBPAL: sage.he

APM
ERPA
GAS: gas.ibd.pc210, gas.ibs.pchi2,b and gas.ibs.pzb

One typed, one
untyped (1unt
data sets)

ASPEX: aspex.ibd
ERPA
GAS: gas.lod, gas.ibd.pb10, gas.ibd.pc210,

gas.ibd.pt2, and gas.ibs.pzb

SIBPAL: sage.he

APM
ASPEX: aspex.onlyb

ERPA
GAS: gas.lod, gas.ibd.pb10, gas.ibd.pc210,

gas.ibd.pt2, gas.ibs.pzb, and gas.ibs.pchi2b

Both untyped
(2unt data sets)

ASPEX: aspex.ibd
ERPA
GAS: gas.lod, gas.ibd.pb10, gas.ibd.pc210,

gas.ibd.pt2, and gas.ibs.pzb

Genehunter: gh.all
SIBPAL: sage.he

APM
ASPEX: aspex.ibd and aspex.onlyb

GAS: gas.lod, gas.ibd.pb10, gas.ibd.pc210,
gas.ibd.pt2, and gas.ibs.pzb

SimIBD

NOTE.—A statistic was to be avoided if its power fell below 1 SD below the mean and/or if it had other shortcomings, noted
in the two footnotes below.

a The statistics in italics ignored most or all of the families in the respective data sets.
b Statistic had a false-positive rate that was 16%.

Power Estimates

Data originally simulated by Goldin and Weeks
(1993), using the method of Martinez and Goldin
(1990), were analyzed in order to evaluate each of the
statistics. Martinez and Goldin simulated their data by
assuming a two-locus disease model with a single marker
(with four equally frequent alleles) linked, at , tov � .05
the first disease locus. They generated data under eight
different models (which will be referred to by the short
key words in parentheses below): Models involving two
dominant loci (DD), two recessive loci (RR), and a dom-
inant and a recessive locus (DR and RD) represent the
epistatic models. A model with additive penetrance (AD)
also was analyzed. The parameters used in the simula-
tion of these five epistatic models correspond to those
of unipolar and bipolar affective disorders and predict
a population prevalence of 7% and a recurrence risk, in
first-degree relatives, of 25%–30%. In addition, three
models included heterogeneity at levels of 50% (H50),
25% (H25), and 10% (H10) of families linked to the
marker. The population prevalence for these models was
2%, and disease could be due to either of two dominant
loci (90% penetrant).

For each of the eight disease models described above,
six different data sets were created (requiring yet another
set of key words, which are described below and in table
2). These data sets differed only in the nuclear-family
structures and the level of parental genotyping. For three
of the data sets, the nuclear families consisted of two
affected sibs only (collectively, called the “2o” data sets)

and two, one, or zero parents genotyped for each nuclear
family: these three data sets are called the “2o,”
“2o.1unt,” and “2o.2unt” data sets, respectively. For
the other three data sets, the nuclear families consisted
of four sibs, at least two of whom were affected (col-
lectively, called the “at2� data sets), and two, one, or
zero parents genotyped: these data sets are called the
“at2,” “at2.1unt,” and “at2.2unt” data sets, respec-
tively. As an example, consider the 2o.1unt data set for
the DR disease model, all of which was generated under
the DR two-locus disease model. Families from this
2o.1unt data set included one genotyped parent and one
untyped parent and their two affected children, both of
whom were genotyped.

Thus, the data analyzed here constitute 48 separate
data sets (6 different data sets for each of the eight dis-
ease models). Each data set contained 20 replicates of
100 families each. For each replicate of each data set,
we computed each of the statistics listed in table 1. For
each statistic, the power to detect linkage was calculated
as the proportion of replicates, of the total of 20 rep-
licates, with positive linkage results. The threshold for
positive evidence of linkage was defined as a nominal

. We chose to use this threshold rather than aP � .05
stricter one because the power estimates were based on
only 20 replicates. Power estimates based on a more
stringent threshold would be less accurate and lower
than those reported here. When possible, we used the P
value generated by the program that corresponds to the
LOD score. However, ASPEX, Mapmaker/Sibs, and
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GAS do not output P-value equivalents for their re-
spective LOD scores. Therefore, we used the LOD scores
of 0.5875 ( , for maximization under the as-P � .05
sumption of no dominance variance) for ASPEX and
0.7115 ( , for maximization restricted to the pos-P � .05
sible-triangle restriction; Holmans 1993) for GAS
(gas.lod) and Mapmaker/Sibs (sibs.lod, sibs2.lod, and
sibs3.lod).

For each data set, we computed the power under each
of the eight disease models and averaged the power over
the disease models. The power results were summarized
as six average-power estimates—one estimate per data
set—for each statistic; that is, each estimate is the av-
erage power over all eight disease models, for one of the
six possible nuclear-family structures (the 2o, 2o.1unt,
2o.2unt, at2, at2.1unt, and at2.2unt data sets). Then,
for each of the six family structures, a so-called grand
mean power was calculated by averaging the 23 power
estimates within a family structure, yielding six grand
means (and six SDs).

Overall ranks based on power were constructed as
follows: a total of 48 ranks, one for each of the six data
sets within each of the eight disease models, were com-
puted for each statistic. Ties were given the rank lying
midway between what would have been the lowest rank
and what would have been the highest rank, if there had
not been a tie. The overall rank was computed as the
average rank over only those data sets to which the
statistic could be applied (e.g., the sage.he statistic is not
applicable without at least one unaffected sibling).
Therefore, some statistics might have a high rank al-
though they cannot be generally applied to all data sets.

False-Positive Rates

In addition to estimating the power to detect linkage,
we also determined empirical false-positive rates for each
of the statistics, for the same six nuclear-family struc-
tures used in the power calculations. One thousand rep-
licates of 100 nuclear families each were generated for
each family structure, with the single marker (with four
equally frequent alleles) unlinked to the disease. Disease
status was taken from a single replicate of the RR data
set and was identical for each of the 1,000 replicates.
For each statistic, the false-positive rate was calculated
as the proportion of replicates, of the total of 1,000
replicates, with positive linkage results. The thresholds
for definition of positive linkage results were chosen to
match those used in the power estimation.

Generation of Recommendations from the Data

A summary recommendation for each of the six family
structures was generated on the basis of the power es-
timates of all the statistics. Those statistics that had av-
erage power, within a family structure, that (1) fell below

1 SD of the grand mean power for all statistics, (2) had
a false-positive rate that was 16% (allowing for some
leeway in the false-positive rate), or (3) ignored large
proportions of the data in a given data set (noted in
table 2) were considered to be “not recommended.” For
example, gas.ibd.pc210 is not recommended for the at2
family structure, because its average power for this fam-
ily structure was 11 SD below the corresponding grand
mean power.

From the results for each statistic for multiple repli-
cates, it was possible to determine correlations between
statistics. Because we wished to calculate correlations
between all pairs of statistics, it was necessary first to
linearize P values, with respect to LOD scores, by use
of the negative log of the P value (a small constant was
added to P values of zero). We then calculated pairwise
correlation coefficients between a selected set of statis-
tics, for the DD and DR data sets. These disease models
were chosen because power was relatively high, allowing
some differentiation between the most powerful statis-
tics, while minimizing the effects of noise (false-positive
rate). We present results from the at2 data sets, because
these data sets showed more variation than did the 2o
data sets.

Examination of Composite Statistics, Using Multiple
Tests for Detection of Linkage

We applied a heuristic composite statistic that assays
for consensus among multiple tests of linkage, by a two-
of-three rule; that is, the composite statistic was consid-
ered to be significant if two of three statistics were sig-
nificant at an adjusted significance level. The adjusted
significance level was chosen to generate an empirical
false-positive rate of ∼5% when the composite statistic
was applied to unlinked simulated data (the component
statistics were required to use the same adjusted signif-
icance level). For example, if two statistics were used to
form the composite statistic, the adjusted significance
level would be the unique threshold that, when applied
to each statistic independently, led to the composite sta-
tistic having the correct false-positive rate. We chose to
use the statistics sage.asp, sp.lod.p.both, sp.lod.p.aff,
splink.p.lod, simibd, and gh.all to construct composite
statistics, because they employ somewhat different ap-
proaches, measure different quantities, and have varied
pairwise correlations and powers to detect linkage. We
examined disease models DD, DR, RR, and H50, be-
cause most of the statistics had intermediate to high
power for these disease models (when compared with
the other four disease models). We also looked at the
number of disease models (of the eight total) for which
a given composite statistic performed better than the
most powerful single statistic, of all the statistics tested;
within each disease model, we did this for all data sets
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Figure 1 Power to detect linkage. Statistics are ordered in decreasing rank, by power, with the best-ranked statistic on the left. For
definitions of the statistic names, see table 1. A, Family structure included two affected siblings and their parents, with zero (“2o”), one
(“2o.1unt”), or both (“2o.2unt”) parents untyped. B, Family structure included four siblings, at least two of whom were affected, and their
parents, with zero (“at2”), one (“at2.1unt”), or both (“at2.2unt”) parents untyped.

combined and for the 2o and at2 data sets separately
(using appropriately adjusted significance levels for
each).

Results

Power to Detect Linkage

The power for the family structures with two affected
sibs only (2only) and the power for those with four sibs,
at least two of whom are affected (atleast2), are pre-

sented in figure 1A and B, respectively. Note that, in
both panels, the statistics are arranged by average rank,
in decreasing order from left to right.

Several general trends are evident from the results.
First, as might be expected, the power for the 2only data
sets is generally lower than that for the at2 data sets.
Second, of the top-10-ranked statistics, all but 2
(sage.asp and sage.he) are based on likelihood-based
tests. Third, some of the statistics return no value for
some of the data sets. For example, all of the GAS IBD-
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sharing statistics (including gas.lod) exclude all families
without two genotyped parents and are, therefore, only
applicable to those data sets in which both parents have
been genotyped. The sage.he statistic requires unaffected
sibs for computation and is, therefore, excluded from
figure 1A. Fourth, in terms of power, those statistics that
measure IBS sharing generally fare much worse (on the
right in fig. 1A and B) than those that measure IBD
sharing. Finally, the differences in power among the dif-
ferent methods are much smaller with the 2only data
sets than with the atleast2 data sets.

Examining individually each statistic in figure 1A and
B, one notes that, in nearly every case, the highest power
occurs when both parents have been typed, as would be
expected. Also, the likelihood-based methods are gen-
erally very good at maintaining power in the presence
of untyped parents. The decrease in power due to one
or both parents being untyped was, of course, less for
the atleast2 data sets than for the 2only data sets, be-
cause more children were available for the inferring of
any missing parental genotypes. For example, notice that
the power for the 2o.2unt data set for splink.p.lod is
reduced by 9%, compared with that for the 2o data set,
whereas essentially no change in power is introduced by
untyped parents in the atleast2 data sets. In contrast, in
the 2only data sets, power for both Genehunter NPL
statistics (gh.all and gh.pairs) drops off quickly as the
number of typed parents decreases; that is, Genehunter
NPL becomes more conservative as information
decreases.

False-Positive Rates

The empirical false-positive rates for most of the sta-
tistics were, in general, near or slightly below the nom-
inal significance level of .05 (fig. 2A and B). As with the
results for power, there was much more diversity in the
false-positive rates for the atleast2 data sets than in those
for the 2only data sets. Exceptionally high (16%) false-
positive rates were observed for the statistics gas.ibs.pz,
for all the data sets; gas.ibs.pchi2, for the atleast2 data
sets; apm, for the 2o.2unt data sets; and aspex.only, for
the at2.1unt and at2.2unt data sets. Other statistics were
somewhat conservative. Those statistics with false-pos-
itive rates !2% included both Genehunter statistics
(gh.all and gh.pairs), for all data sets except the at2 data
sets; all the splink statistics (splink.p and splink.p.lod),
for the atleast2 data sets; and sibs3.lod (the Mapmaker/
Sibs statistic using all pairs of affected sibs), for the
at2.1unt and at2.2unt data sets.

Composite Statistics

We examined the correlations between the component
statistics, because the behavior of a composite statistic
will depend on the level of correlation between its com-

ponent statistics; for example, if two statistics are highly
correlated, then a composite of the two is unlikely to
provide more information than either one alone. Pair-
wise correlations among eight statistics (sage.asp, apm,
simibd, sp.lod.p.both, sp.lod.p.aff, gh.all, gh.pairs, and
splink.p.lod) are given for the DD and DR disease mod-
els, in table 3. Pairwise correlations between apm and
other statistics are fairly low (relative to other correla-
tions), owing to the use of IBS sharing in the APM
method. Correlations between simibd and the other sta-
tistics are also somewhat low, probably because SimIBD,
unlike the programs for most of the other statistics, does
not use likelihood to infer the genotypes of untyped par-
ents. In fact, when both parents are untyped, APM and
SimIBD are theoretically equivalent (although APM out-
puts an asymptotic P value, whereas SimIBD outputs an
empirical P value). The correlations between sage.asp
and sp.lod.p.aff are high, since they are different imple-
mentations of essentially the same test (Hyer et al. 1991;
Knapp et al. 1994b). The statistics gh.pairs and
splink.p.lod have intermediate correlations with each
other and with the other statistics. Finally, gh.all and
sp.lod.p.both show somewhat reduced correlations with
other statistics, when compared with those of gh.pairs
and sp.lod.p.aff, respectively. The statistic gh.all meas-
ures similarity in all affecteds simultaneously, unlike the
other statistics, which measure similarity between pairs
of affecteds only. The statistic spna.lod.p.both computes
a LOD score (under a recessive model) based on all the
information for any genotyped children, whether af-
fected or unaffected, and also would be expected to be
slightly less correlated than the other statistics that meas-
ure only pairwise sharing.

We have compiled several examples that give the
power, adjusted significance level used, and actual false-
positive rate, using the two-of-three composite statistic
(table 4). Recall that the adjusted significance level is the
common significance level that, when applied to each of
the single statistics, produces for the composite statistic
a false-positive rate that is X.05. When applied to the
DD, DR, RR, and H50 disease models, the composite
statistic was at least as powerful as the most powerful
single statistic included in the composite statistic in 18
of 20 cases, and, in 14 of 20 cases, the composite statistic
was more powerful than the most powerful statistic in-
cluded in the composite. However, if one compares the
composite-statistic power to the power from the most
powerful single statistic, of all those statistics tested for
each disease model, one sees that the case for use of the
composite statistic is less compelling. The composite sta-
tistic met or exceeded the most powerful single statistic
for at most three disease models when all data sets were
considered and for at most four disease models when
the data sets were divided into either the 2o data sets
or the at2 data sets (last three columns of table 4). In
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Figure 2 False-positive rates. Statistics are ordered in decreasing rank, by power, with the best-ranked statistic on the left (as in fig. 1).
For definitions of the statistic names, see table 1. A, Family structure included two affected siblings and their parents, with zero (“2o”), one
(“2o.1unt”), or both (“2o.2unt”) parents untyped. B, Family structure included four siblings, at least two of whom were affected, and their
parents, with zero (“at2”), one (“at2.1unt”), or both (“at2.2unt”) parents untyped.

each case, the power gained by use of the composite
statistic, over that gained by use of the most powerful
single statistic, was !10%.

Discussion

Measurement of IBS versus IBD Sharing

With the advent of methods that use maximum like-
lihood to determine IBD sharing, the importance of IBS
methods has decreased. From our data, it is obvious that

methods that use IBD sharing are more powerful than
those that use IBS sharing (e.g., the APM and gas.ibs
methods). For the at2.2unt and 2o.2unt cases, in which
both parents were untyped, most of the IBD-sharing
methods were much better than the methods that utilize
IBS sharing, even though IBS methods originally were
intended for use in these situations. This is because the
IBD-based methods tend to compute their statistics by
taking weighted sums over missing parental marker gen-
otypes, whereas the IBS-based methods do not sum over
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Table 3

Pairwise Correlation Coefficients between Statistics (by Use of the Raw Value for the LOD Scores and the
Negative Natural Log of the P Values)

DATA SET AND

STATISTIC

CORRELATION COEFFICIENT

apm simibd gh.pairs gh.all sage.asp sp.lod.p.both sp.lod.p.aff splink.p.lod

at2:
apm 1.000 .352 .346 .338 .497 .455 .497 .375
simibd .386 1.000 .762 .706 .649 .173 .823 .756
gh.pairs .505 .858 1.000 .948 .738 .550 .696 .990
gh.all .475 .809 .978 1.000 .759 .554 .702 .941
sage.asp .118 .691 .844 .877 1.000 .431 .744 .761
sp.lod.p.both .407 .480 .544 .530 .334 1.000 .709 .542
sp.lod.p.aff .227 .509 .793 .837 .813 .442 1.000 .707
splink.p.lod .440 .852 .990 .969 .880 .529 .818 1.000

at2.1unt:
apm 1.000 �.073 .322 .301 .497 .198 .306 .364
simibd .780 1.000 .656 .709 .348 .554 .653 .648
gh.pairs .598 .655 1.000 .959 .723 .625 .867 .984
gh.all .598 .705 .980 1.000 .769 .612 .867 .969
sage.asp .168 .449 .752 .803 1.000 .340 .771 .789
sp.lod.p.both .312 .462 .656 .682 .541 1.000 .517 .617
sp.lod.p.aff .293 .542 .875 .855 .804 .517 1.000 .897
splink.p.lod .533 .602 .986 .971 .789 .649 .898 1.000

at2.2unt:
apm 1.000 .681 .408 .406 .568 .104 .387 .444
simibd .894 1.000 .547 .543 .734 .344 .343 .573
gh.pairs .691 .438 1.000 .999 .823 .895 .824 .984
gh.all .710 .457 .999 1.000 .830 .896 .832 .988
sage.asp .370 .103 .779 .768 1.000 .624 .879 .881
sp.lod.p.both .334 .138 .668 .668 .441 1.000 .675 .859
sp.lod.p.aff .408 .136 .820 .810 .997 .477 1.000 .871
splink.p.lod .651 .370 .987 .984 .817 .664 .857 1.000

NOTE.—For each of the three sections, correlations for the DD disease model are in the upper triangle, and
those for the DR disease model are in the lower triangle.

missing genotypes. Furthermore, at least two of the IBS
methods, gas.ibs.pchi2 and gas.ibs.pz, have unaccepta-
bly high false-positive rates.

Use of Information from Unaffected Siblings

Information from unaffected siblings can be useful at
two levels, depending on whether the siblings are treated
as phenotypically “unknown” or “normal” at the dis-
ease locus. First, the disease status of all unaffected sib-
lings can be ignored while their marker data are used
to help infer missing parental genotypes, making infer-
ences about IBD sharing more precise (i.e., an affecteds-
only analysis). Second, the unaffected siblings for whom
there are adequate diagnostic data can be treated as phe-
notypically normal (i.e., as having reduced genetic sus-
ceptibility, compared with an affected sibling). These
normal siblings then would be expected to share less
than the expected proportion of alleles IBD with their
affected siblings and could contribute to a statistic de-
signed to capture this additional information (Ward
1993; Davis et al. 1996).

Holmans and Clayton (1995) examined the effects of
using unaffected siblings in the two senses described

above. They found that it was helpful to use unaffected
siblings to aid in the inferring of parental genotypes but
that use of the “normal” status information was only
helpful if penetrance was relatively high, since “normal”
and affected siblings will become more similar at a locus
as penetrance decreases. Note that, for many two-locus
disease models, the (marginal) penetrance is quite low.

The Haseman-Elston method (with sage.he) uses
“normal” siblings not only to infer missing parental gen-
otypes (which many methods now do) but also to con-
struct the test statistic. Another program, SIBPAIR (Ter-
williger 1996), is based on the equality of the ASP mean
test (Blackwelder and Elston 1985) and a LOD score
calculated under a recessive model of inheritance (Hyer
et al. 1991; Knapp et al. 1994b). Because it uses a simple
LOD score, the SIBPAIR program easily accommodates
information from unaffected individuals. For the data
used in this study, the power gained by use of a “normal”
phenotype can be measured directly by comparison of
sp.lod.aff, which treats all unaffecteds as phenotype “un-
known,” to sp.lod.both, which treats unaffecteds as phe-
notypically normal. Inclusion of phenotypically normal
siblings, in the LOD calculation, increases the power of
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Table 4

Results from Application of the Two-of-Three Composite Statistic

CASE NO. AND

STATISTIC

FALSE-POSI-
TIVE RATE

OR SIGNIFI-
CANCE

LEVELa

(%)

POWER TO DETECT LINKAGE,
BY DISEASE MODELb

(%)

NO. OF DISEASE MODELS (OF 8)
FOR WHICH POWER MEETS OR

EXCEEDS MOST POWERFUL SINGLE

STATISTICc

DD DR RR H50
All

Data Sets
2o

Data Sets
at2

Data Sets

1:
Composite 4.7 96.67 83.33 96.67 93.33 3 3 2
sp.lod.p.both 7.2 91.67 85.00 95.83 92.50
sage.asp 7.2 92.50 78.33 95.83 90.83
splink.p.lod 7.2 86.67 75.00 95.83 88.33

2:
Composite 4.9 95.83 83.33 95.83 94.17 2 2 2
gh.all 8.3 80.00 74.17 85.83 84.17
sage.asp 8.3 92.50 78.33 95.83 90.83
splink.p.lod 8.3 86.67 75.00 95.83 88.33

3:
Composite 4.8 95.00 84.17 95.83 93.33 2 2 2
gh.pairs 8.3 76.67 67.50 92.50 76.67
sp.lod.p.aff 8.3 91.67 80.83 95.83 92.50
splink.p.lod 8.3 86.67 75.00 95.83 88.33

4:
Composite 4.8 95.83 85.83 95.83 95.00 3 4 2
gh.all 9.0 80.00 74.17 85.83 84.17
splink.p.lod 9.0 86.67 75.00 95.83 88.33
sp.lod.p.both 9.0 91.67 85.00 95.83 92.50

5:
Composite 4.9 95.83 84.17 95.83 94.17 2 3 4
simibd 6.6 75.83 69.17 88.33 83.33
sp.lod.p.both 6.6 91.67 85.00 95.83 92.50
sage.asp 6.6 92.50 78.33 95.83 90.83

a The false-positive rate for the composite statistic or the adjusted significance level for each single statistic.
b On the basis of P X .05, for both the composite statistic and the individual statistics. Underlining indicates

the most powerful statistic for each disease model, in each case. (In the case of a tie, the power for the
composite statistic is underlined.)

c An adjusted significance level was computed separately for each group of data sets.

the statistic by ∼10%. Therefore, although there are ar-
guments for analysis of ASPs only in a study, our data
suggest that the most powerful ASP tests, when there
are typed unaffected individuals present in most of the
families (e.g., the at2 data sets), are sage.he (Haseman-
Elston) and sibpair.lod.p.both, each of which uses the
normal phenotype.

Choosing of Pairings with More Than Two Affected
Siblings per Sibship

When more than two affected siblings are present in
a sibship, all possible pairs of siblings are not statistically
independent (Hodge 1984). Therefore, some programs
allow the user to specify which pairings of affected sib-
lings are used. One such program, Mapmaker/Sibs, al-
lows the user to select one of three schemes: (1) use of
only one affected pair per family; (2) use of all inde-
pendent pairs by choosing one affected sibling and by
pairing this sibling with each other affected sibling in

turn; or (3) use of all pairs of affected siblings. The
statistics in figures 1 and 2 that correspond to the three
cases just described are sibs.lod, sibs2.lod, and sibs3.lod,
respectively. For the 2o data sets, the false-positive rates
and power of these three statistics were identical, as
would be expected. However, for the at2 data sets, in
which more than two affected siblings may be present
in some or all of the families, the results differed. The
statistic sibs3.lod is the same or slightly more powerful
than sibs2.lod, and both seem to be more powerful than
sibs.lod. Furthermore, sibs3.lod is more conservative
than sibs2.lod, which is, in turn, more conservative than
sibs.lod. Thus, the data imply that sibs3.lod is at least
as powerful as and more conservative than either of the
other two statistics; the use of all possible pairs of af-
fected siblings is beneficial in terms of power and does
not produce a high false-positive rate, even though the
pairs are not independent. Note that these families con-
tain a maximum of four affected siblings, so generali-
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zation from our data to more than four affected siblings
is not possible. In fact, J. Terwilliger (personal com-
munication) has shown that use of all pairs can be quite
detrimental if there are large sibships in the data, since
existing weighting functions fail to lead to well-behaved
statistics. Ebers et al. (1996, p. 476) also noted this phe-
nomenon, stating that “creating all pairs from larger
sibships causes allele sharing distribution to be positively
skewed so that P values in the far tail (but not the body
of the distribution) may be underestimated by assuming
normality.”

Heuristics Using Multiple Statistics

Our data suggest that, in most cases, a two-of-three
rule was more powerful than the most powerful test used
to construct the composite statistic. However, when
compared with use of the most powerful single statistic
tested, the case for use of a composite statistic was less
convincing. Although large increases in power were not
realized by use of a heuristic, these composite statistics
do seem to provide the researcher with power that is
comparable to that delivered by the most powerful single
statistic composing the composite statistic, without prior
knowledge of what the most powerful single statistic is.

Use of composite statistics such as those employed in
this study requires the use of adjusted significance levels
for the single statistics that compose the composite sta-
tistic. There is no simple way to analytically determine
the adjusted significance level, but, rather, it must be
determined by appropriate simulation studies of un-
linked data (with structure and allele frequencies similar
to those in the data at hand). Given this difficulty, com-
bined with the apparent lack of power when compared
with the most powerful single statistic, it seems that use
of composite statistics may not be effective in the context
of nonparametric sib-pair linkage analysis. (Note that
formulation of a totally new statistic, with the advan-
tages of a composite statistic, could alleviate the need
for determination of the adjusted significance level, if
one then could appeal to analytical arguments to deter-
mine the significance level of the test. Definition of such
a statistic is beyond the scope of this paper.)

As mentioned previously, the power of a composite
statistic is likely to depend on the level of correlation
between its component statistics. Table 3 shows that
most of the statistics tested in this study are quite cor-
related. One might find that statistics with lower cor-
relation could produce greater increases in power, over
those in this study, by use of a composite statistic. The
largest increases in power realized by use of such a com-
posite statistic would occur with statistics that are highly
correlated under the null hypothesis (i.e., those that find
the same false-positive results) but that are less corre-
lated under linkage. In other words, statistics that are

less correlated under linkage may capture different as-
pects of the data, whereas the high correlation under the
null hypothesis might not lead to high false-positive
rates. In the context of nonparametric sib-pair analysis,
such tests are difficult to construct, because of the high
correlation between the most powerful tests. However,
in the larger context of parametric and nonparametric
linkage analysis of families with varying structures
(Haines et al. 1996), correlations between statistics may
be considerably lower under linkage, perhaps making
composite statistics more useful.

Recommendations

The final goal of this work was to provide the re-
searcher with a set of recommendations about the pos-
sible ASP linkage methods, on the basis of empirical
results. Several statistics performed well over most or all
of the data sets and disease models. Specifically, the SIB-
PAL sage.asp statistic was reasonably powerful for all
situations tested in this study; we agree with others who
suggest that the t2 test implemented in sage.asp is pow-
erful and theoretically sound (Blackwelder and Elston
1985; Knapp et al. 1994a). The sage.asp statistic did not
provide the highest average power for any data set but
had consistently good power, making it a very reliable,
versatile choice. Also faring well was the SIBPAIR pack-
age; in fact, for all the atleast2 data sets, sp.lod.p.both
performed at least 1 SD above the mean. The same was
true for sage.he. Note that the sage.he statistic could not
be computed for the 2o data sets, because it requires
typed, unaffected sibs.

As for statistics that have shortcomings (table 3), apm
and erpa both had average power in the lowest quartile,
for all the data sets, suggesting that other methods
should be used for analysis of ASPs. Any method based
on IBS sharing did not fare well in our comparison.
Many of the GAS statistics have high false-positive rates
and low average power. In addition, all the GAS statistics
that measure IBD sharing will only use families in which
both parents have been typed, resulting in very low
power, compared with that of other methods, if many
families contain at least one untyped parent. The ASPEX
sib�only (aspex.only) module has been retired, because
of this study’s findings that the false-positive rates for
the at2 data sets were unacceptably high.

One program that had surprisingly low power was
Genehunter. In several cases, either one or both of the
nonparametric statistics offered power in the lowest
quartile. Examination of false-positive rates for these
cases revealed that both gh.pairs and gh.all are extremely
conservative. This conservative false-positive rate and
relatively low power are most likely a function of the
information contained in the marker; Kruglyak et al.
(1996) stated that the perfect-data approximation will



Davis and Weeks: Comparison of Linkage Methods 1443

result in a P value that becomes more conservative as
data become less informative. Because our data included
only a single marker, Genehunter could not use multi-
point data to effectively increase the information content
of the data. Therefore, Genehunter should perform bet-
ter with multipoint data but will be a conservative test
for linkage as long as data are not fully informative.

Conclusion

Our work supports the work of others and finds that
the ASP mean test as implemented in sage.asp and,
equivalently, in SIBPAIR performs well on a variety of
disease models and is robust for data with untyped par-
ents. When unaffected (normal) siblings have been
typed, the SIBPAIR program and sage.he incorporate
this additional information to effectively increase power
by treating these individuals as phenotypically “nor-
mal.” We also have found that use of a simple heuristic
to form a composite statistic has properties suggesting
that the use of a composite statistic is not warranted for
nuclear-family data, especially since use of such a sta-
tistic would require careful simulation studies for mar-
ginal gains in power.

Several of the methods that we applied to single-
marker data also have been extended to the simultaneous
analysis of multiple marker loci. We plan to do an anal-
ogous study to investigate the characteristics of multi-
point nonparametric linkage methods for ASPs. Finally,
it is important to keep in mind that the recommendations
presented here are based on a limited number of repli-
cates (20) and data sets and, therefore, should be viewed
with a grain of salt. In our multipoint follow-up study,
we will use more replicates and data sets.
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